Morphological Diversity and Sparsity in Blind Source Separation
نویسندگان
چکیده
This paper describes a new blind source separation method for instantaneous linear mixtures. This new method coined GMCA (Generalized Morphological Component Analysis) relies on morphological diversity. It provides new insights on the use of sparsity for blind source separation in a noisy environment. GMCA takes advantage of the sparse representation of structured data in large overcomplete signal dictionaries to separate sources based on their morphology. In this paper, we define morphological diversity and focus on its ability to be a helpful source of diversity between the signals we wish to separate. We introduce the blind GMCA algorithm and we show that it leads to good results in the overdetermined blind source separation problem from noisy mixtures. Both theoretical and algorithmic comparisons between morphological diversity and independence-based separation techniques are given. The effectiveness of the proposed scheme is confirmed in several numerical experiments.
منابع مشابه
Blind Source Separation: the Sparsity Revolution
Over the last few years, the development of multi-channel sensors motivated interest in methods for the coherent processing of multivariate data. Some specific issues have already been addressed as testified by the wide literature on the so-called blind source separation (BSS) problem. In this context, as clearly emphasized by previous work, it is fundamental that the sources to be retrieved pr...
متن کاملMulti-channel Image Source Separation by Dictionary Update Method
In real world, a large set of mixed signals are available from which each source signal need to be recovered and this problem can be addressed with adaptive dictionary method. In the case of multichannel observations sparsity found to be very useful for source separation. The problem exist is that in most cases the sources are not sparsified in their domain and it will become necessary to spars...
متن کاملNMF with Sparse Regularizations in Transformed Domains
Non-negative blind source separation (non-negative BSS), which is also referred to as non-negative matrix factorization (NMF), is a very active field in domains as different as astrophysics, audio processing or biomedical signal processing. In this context, the efficient retrieval of the sources requires the use of signal priors such as sparsity. If NMF has now been well studied with sparse con...
متن کاملRobust Non-Negative Matrix Factorization for Multispectral Data with Sparse Prior
In this work, we study Non-Negative Matrix Factorization (NMF) and compare standard algorithms with an extension to NMF of a Blind Source Separation algorithm using sparsity, Generalized Morphological Component Analysis (GMCA). We also develop a more robust version of GMCA handling more precisely the priors through sub-iterations, which we call rGMCA. We present preliminary results showing GMCA...
متن کاملBlind Source Separation via Multinode Sparse Representation
We consider a problem of blind source separation from a set of instantaneous linear mixtures, where the mixing matrix is unknown. It was discovered recently, that exploiting the sparsity of sources in an appropriate representation according to some signal dictionary, dramatically improves the quality of separation. In this work we use the property of multi scale transforms, such as wavelet or w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007